Краткая история появления параллелизма в архитектуре ЭВМ
Закон Амдала и его следствия
Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, где 0<=f<=1 (при этом доля понимается не по статическому числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f=1) программам. Так вот, для того, чтобы оценить, какое ускорение S может быть получено на компьютере из 'p' процессоров при данном значении f, можно воспользоваться законом Амдала:
Если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (ясно, что 10 получается только в том случае, когда время исполнения параллельной части равно 0).
Посмотрим на проблему с другой стороны: а какую же часть кода надо ускорить (а значит и предварительно исследовать), чтобы получить заданное ускорение? Ответ можно найти в следствии из закона Амдала: для того чтобы ускорить выполнение программы в q раз необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q)-ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем на 99.99% кода, что почти всегда составляет значительную часть программы!
Отсюда первый вывод - прежде, чем основательно переделывать код для перехода на параллельный компьютер (а любой суперкомпьютер, в частности, является таковым) надо основательно подумать. Если оценив заложенный в программе алгоритм вы поняли, что доля последовательных операций велика, то на значительное ускорение рассчитывать явно не приходится и нужно думать о замене отдельных компонент алгоритма.
В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы n чисел:
s = 0
Do i = 1, n
s = s + a(i)
EndDo
(можно тоже самое на любом другом языке)
По своей природе он строго последователен, так как на i-й итерации цикла требуется результат с (i-1)-й и все итерации выполняются одна за одной. Имеем 100% последовательных операций, а значит и никакого эффекта от использования параллельных компьютеров. Вместе с тем, выход очевиден. Поскольку в большинстве реальных программ (вопрос: а почему в большинстве, а не во всех?) нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: a(1)+a(2), a(3)+a(4), a(5)+a(6) и т.д. Заметим, что при такой схеме все пары можно складывать одновременно! На следующих шагах будем действовать абсолютно аналогично, получив вариант параллельного алгоритма.
Казалось бы в данном случае все проблемы удалось разрешить. Но представьте, что доступные вам процессоры разнородны по своей производительности. Значит будет такой момент, когда кто-то из них еще трудится, а кто-то уже все сделал и бесполезно простаивает в ожидании. Если разброс в производительности компьютеров большой, то и эффективность всей системы при равномерной загрузке процессоров будет крайне низкой.
Но пойдем дальше и предположим, что все процессоры одинаковы. Проблемы кончились? Опять нет! Процессоры выполнили свою работу, но результат-то надо передать другому для продолжения процесса суммирования . а на передачу уходит время . и в это время процессоры опять простаивают .
Другое по технологическим наукам
Параллельные компьютеры и супер-ЭВМ
О том, что
где-то существуют некие мистические "очень мощные" компьютеры слышал,
наверное, каждый. В самом деле, не так давно было много разговоров о поставке в
Гидрометеоцентр России могучих компьютеров фирмы Cray Research. В ноябре 1999
года состоялось официальное открытие Межведомстве ...