Экспериментальное доказательство Герцем теории Максвелла и его технические следствия
Заимствованная из механики и акустики теоретическая схема естественного волнового процесса позволяла транслировать для случая электромагнитных волн и соответствующую математическую схему - геометрическое изображение стоячей волны с ее узлами, пучностями, периодом, фазой и длиной. Пользуясь этой схемой Генрих Герц поставил соответствующие эксперименты и произвел необходимые измерения: в частности, изменения фазы и амплитуды электромагнитных волн при отражении и показателя преломления асфальтовой призмы. Герц также, как и Максвелл, использовал Фарадеево представление об электрических и магнитных силовых линиях, детализировав его. Например, он приводит изображения так называемого процесса "отшнуровывания" силовых линий от вибратора (колебательного контура), ставшего затем очень важным для радиотехники элементом радиопередающего устройства, анализируя распределение сил для различных моментов времени. Он называет такое изображение "наглядной картиной распределения силовых линий" (см. рис. 1) [9].
Герц строит особые структурные теоретические схемы и соответствующий им концептуальный аппарат (например, понятия вибратора и резонатора). Скрупулезное описание конструкции опытного оборудования (в том числе, материала, из которого изготовлены зеркала, их формы и размеров) сочетается у него с обобщенным теоретическим описанием экспериментально-измерительных ситуаций в виде структурных схем, которые являются прообразом будущих электрических схем радиоприемного и радиопередающего устройств и входят в состав физической теории (вибратор и резонатор). Для регистрации искры он искал сначала позицию микрометра, соединенного проводом с вибратором, а затем отсоединенного от него, что позволило ему открыть беспроводную передачу электромагнитных волн (см. рис. 2-А) [10].
При исследовании явления электромагнитного резонанса Герцу приходилось подбирать нужные параметры различных компонентов его установки, включавших индукционную катушку, разрядник, конденсатор и т.д. Он измерял длину искры и расстояние между вибратором и резонатором, на основе этих измерений вычерчивал резонансные кривые и проводил необходимые расчеты. Разрабатывая новое экспериментальное оборудование, он действовал как инженер, хотя и не имел в виду какого-либо технического применения своих экспериментальных устройств. И математический аппарат, и опыты служили ему лишь средством к пониманию и объяснению физического процесса - распространения электромагнитных волн в пространстве. Но благодаря именно его работам электродинамика смогла дать жизнь новой сфере инженерной деятельности и соответствующей ей технической теории.
Свою хорошо оснащенную лабораторию в университете Карлсруэ Герц унаследовал от Фердинанда Брауна, профессора электротехники, модернизировавшего в 1883-1885 гг. курсы соответствующих дисциплин в этом университете. Уже "в его ранних исследованиях, которые он проводил задолго до возникновения беспроволочной телеграфии, можно обнаружить зародыши важнейших разработок в этой области [ .] Он обладал огромным даром и необыкновенным искусством создания вспомогательного экспериментального оборудования. Именно таким образом появилась измерительная аппаратура, имеющая большое самостоятельное значение, которая нашла применение в качестве физической исследовательской и измерительной техники", - писали о Брауне Мандельштам и Папалекси в 1928 г. [11]
Когда Герц прибыл в Карлсруэ, перед ним "была поставлена задача читать лекции по физическому эксперименту для студентов инженерных специальностей. Для решения этой задачи у него в распоряжении было все необходимое физическое оборудование, которое он мог также использовать и для исследовательских целей" [12]. Позже Герц писал:
"В физическом арсенале высшей технической школы Карлсруэ, где я проводил эти опыты, я нашел и использовал для лекционных целей пару так называемых спиралей Рисса [13]. У меня вызвал удивление тот факт, что не было необходимости разряжать большую батарею через эту спираль, чтобы сохранить искру в другой спирали, что было вполне достаточно использовать для этого, напротив, маленькие лейденские банки, ведь искрение небольшого индуктора происходило, сразу же после разряда искрового промежутка. Я заметил, что при изменении расстояния [между спиралями] появляется сопутствующая искра, и взял это явление как исходное для моего последующего исследования. Сначала я считал эти электрические движения слишком стремительными и нерегулярными для дальнейшего использования; но когда я обнаружил появление узлов [14] в середине рядом расположенного провода и тем самым ясное и чистое явление, я убедился, что теперь задача, поставленная Берлинской академией, может быть решена, а далее этого мое честолюбие тогда и не распространялось. Мое убеждение, естественно, усилилось после того, как я понял, что имею дело с регулярными колебаниями" [15].
Другое по технологическим наукам
Золотой век Екатерины II Великой (1762 - 1796 гг.)
Из
всех женщин, царствовавших в России в ХVIII в., только Екатерина II правила
самостоятельно, вникая во все дела внутренней и внешней политики. Свои главные
задачи она видела в укреплении самодержавия, реорганизации государственного
аппарата с целью его усиления, в упрочении международного положе ...